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We present a theory describing the mechanism for the two-dimensional �2D� metal-insulator transition
�MIT� in the absence of disorder. A two-band Hubbard model is introduced, describing vacancy-interstitial pair
excitations within the Wigner crystal. Kinetic energy gained by delocalizing such excitations is found to lead
to an instability of the insulator to self-doping above a critical carrier concentration n=nc, mapping the
problem to a density-driven Mott MIT. This mechanism provides a natural explanation of several puzzling
experimental features, including the large effective mass enhancement, the large resistivity drop, and the large
positive magnetoresistance on the metallic side of the transition. We also present a global phase diagram for the
clean 2D electron gas as a function of n and parallel magnetic field B�, which agrees well with experimental
findings in ultraclean samples.
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INTRODUCTION

Significant experimental advances1 over the past ten years
have provided beautiful and convincing evidence for the ex-
istence of a sharp metal-insulator transition �MIT� in two-
dimensional �2D� electron gases �2DEG�. This progress has
sparked much renewed interest in better understanding the
basic physical mechanisms that drive the MIT, a fundamental
physical question that has remained poorly understood for
many years.

One important issue relates to the stability of an interact-
ing 2D metal with respect to disorder. While even weak dis-
order is known to destroy any 2D metal in the absence of
interactions,2 very recent work3 has provided strong theoret-
ical evidence that electron-electron interactions may stabilize
a 2D metallic phase. This theory focuses on the most singu-
lar hydrodynamic corrections within the low temperature dif-
fusive regime, and views disorder as the principal driving
force that produces the insulating state.

It should be emphasized, though, that the best evidence
for a sharp MIT is found in the cleanest samples, where the
diffusive regime is restricted to low densities and extremely
low temperatures. Indeed, the experimental data1 demon-
strating strong effective mass m* enhancements have all
been obtained in the ballistic regime, where diffusive pro-
cesses are irrelevant. An important question then arises: How
many of the key experimental features can be understood by
deliberately disregarding disorder, and focusing on interac-
tion effects alone as the main driving force for the transition?
This question is the main subject of this paper, where we
propose the quantum melting of a Wigner crystal as the fun-
damental mechanism for the MIT in a sufficiently clean
2DEG.

It is well known that at the lowest carrier densities the 2D
electrons form a triangular Wigner lattice. Here, each lattice
site is occupied by a single spin 1 /2 electron, since strong
on-site Coulomb repulsion prevents double occupation. The
Wigner crystal can therefore be viewed as a �magnetic� Mott
insulator, characterized by an abundance of low-lying spin
excitations, but with an appreciable energy gap to charge
excitations. As density increases, the gap to vacancy-

interstitial pair formation decreases until the system under-
goes a transition to a metallic state. The MIT from such a
Mott insulator to a metal must, therefore, be fundamentally
different from any Anderson-like transition, because the very
physical nature of each insulating state is also completely
different. If this idea is indeed correct—that the Wigner crys-
tal melting is akin to a Mott MIT—then one may expect the
critical behavior of the 2DEG to resemble that of other Mott
systems. The canonical example for the Mott transition in a
continuum system is the Fermi liquid to solid transition in
normal He3. Here, very recent experiments4 on 2D monolay-
ers have provided spectacular support for the Mott transition
scenario. The effective mass m* was found4 to be strongly
enhanced, while the g factor remained essentially unrenor-
malized in the critical region—a behavior shockingly similar
to that found in the most recent experiments1 on the 2DEG.

These arguments provide strong motivation to approach
the Wigner crystal melting as a Mott MIT, and develop an
appropriate theory for the 2DEG. In the following, we de-
scribe the results of such an approach, demonstrating that the
most striking experimental features of the 2D-MIT can all be
simply understood within this framework.

CHARGE-TRANSFER MODEL

Our simplified description of a Wigner crystal is based on
the idea that there exists a pronounced short range order in
charge sector both on the metallic and insulating sides of the
MIT. This idea is strongly supported by quantum Monte
Carlo work,5 which shows that short range charge ordering
changes little across the transition. It strongly suggests that,
in a ballistic regime, a treatment in terms of an effective
lattice model should be applicable on both sides of the tran-
sition. The most important elementary excitations across the
charge gap of a Wigner crystal correspond to vacancy-
interstitial pair formation.6 It should also be mentioned from
the outset that our simplified description does not treat col-
lective modes explicitly, their effect being accounted only
through renormalization of effective microscopic parameters
of the lattice.
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Sufficiently deep within the insulating phase, the electrons
are tightly bound to lattice sites, and such excitations can be
well described by an effective charge-transfer �e.g., two-band
Hubbard� model7 of the form

H = �
i�

� f f i�
† f i� + �cci�

† ci� − �
ij�

tijci�
† cj�

+ �
i�

V�f i�
† ci� + ci�

† f i�� + �
i

Ufi↑
† f i↑f i↓

† f i↓. �1�

Here, f†, f and c†, c are creation and annihilation operators
for site and interstitial electrons, respectively, and U is the
on-site repulsion preventing double occupation of lattice
sites. In the tight-binding limit, the band structure parameters
t and V, and that of the charge-transfer gap �ct=�c−� f, can
be estimated by computing the appropriate wave function
overlaps, leading to exponentially increasing bandwidth with
density. The details of such band structure calculations will
not affect any of our qualitative conclusions, and will not be
reported here.

The potentially most serious limitation of our lattice
model is its phenomenological treatment �see below� of elas-
tic deformation �e.g., collective charge excitations� of the
Wigner lattice. These are expected to, at the least, effectively
renormalize6 the band structure parameters, which should be
quantitatively important for the physics of self-doping which
we explore. More importantly, one may question the very
justification of using an effective lattice model, especially on
the metallic side of the transition. There is no particular rea-
son, however, why the suppression of charge ordering asso-
ciated with lattice formation must coincide with the closing
of the Mott gap and the MIT. In the absence of perfect nest-
ing, the two transitions can occur separately, and the closing
of the Mott gap may be expected to lead to an itinerant
charge-ordered state. At any rate, the existence of short range
order on the metallic side justifies, to a significant degree, the
use of a lattice model in the inelastic regime.

MOTT TRANSITION VIA SELF-DOPING

In the Wigner-Mott insulator, the ground state the electron
occupation is naturally one electron per unit cell. However,
the lattice parameters in the 2DEG are self-consistently de-
termined so that, as the density increases, it may become
energetically favorable for the lattice spacing to slightly ex-
pand or contract, while keeping the charge density per unit
area fixed �due to charge neutrality�. If this happens, the
resulting occupation per unit cell becomes 1−�, correspond-
ing to an effective self-doping of our Wigner-Mott insulator.
Similar phenomena are believed to occur near the Mott tran-
sition in He3,8 and in the proposed formation of the He4

supersolid state.9 Self-doping may change the precise nature
of the MIT, and thus it needs to be carefully examined by
properly incorporating the electrostatic considerations that
are specific to a charged system of particles.

Fermi-liquid condensation energy. Self-doping can be en-
ergetically favorable, since it leads to a kinetic energy gain of
delocalized carriers which condense into a Fermi liquid. The
price to pay is the cost of electrostatic energy to promote a

carrier �electron or hole� across the charge-transfer gap. To
assess the stability of the insulator to self-doping, one must
calculate the doping dependence of the condensation energy
of the incipient Fermi-liquid state. This requires solving the
appropriate Hubbard model—a general problem where no
reliable or accepted theoretical approach is available at
present.

For our purposes, a reliable treatment may be possible,
and we seek inspiration from the closely related problem of
He3 monolayers.4 Here, the observed behavior can be quan-
titatively understood4 by the simplest Brinkmann-Rice �BR�
theory11 of the Mott transition. This indicates that one ap-
proaches an insulator with localized magnetic moments
�hence a large m* as in any heavy fermion compound�,
where the intersite spin correlations �measured by g*� in the
Mott insulator can be ignored, as implied by the BR theory.
Physically, this may be well justified for triangular lattices,
where both the geometric frustration and the importance of
ring exchange processes10 conspire to render the spin corre-
lations negligibly weak in the experimentally relevant energy
�temperature� range.

To implement the BR approach for our problem, we fol-
low the standard methods,11 where �for simplicity� we have
taken U→�. The free energy �per electron� of the self-doped
system then takes the form

W��,Z,�,�� = −
2T

1 − �
�
lk

ln�1 + exp�− �Elk − ��/T��

+
�

1 − �
�Z − 1� + � , �2�

where T is temperature, Elk are renormalized band energies,
� is the Lagrange multiplier imposing the occupancy con-
straint, Z is the quasiparticle weight, and � is the chemical
potential. The free energy W�� ,Z ,� ,�� is stationary in the
ground state: �W /�a=0, where a=� ,Z ,� ,�.

The two bands of the model are coupled via the hybrid-
ization 	ZV. We further assume that the interstitial band den-
sity of states is approximated by a regular function 	�
�. The
renormalized band energies then explicitly read

E1,2�
� =
1

2
�� f + �c + 
 + �� �

1

2
	��c − � f + 
 − ��2 + 4ZV2.

�3�

The hybridization V and the density of states 	�
� have
explicit dependence on the lattice spacing and hence on the
doping �. The density depends on � as 	�
 ,��
=	�
 /����� /����, where ���=0�=1. The details of the de-
pendence of V and � on � are not of qualitative importance
near the transition, as long as V��� and ���� are smooth
functions of �. Note that the van Hove singularities of a
triangular lattice are sufficiently far from the Fermi energy at
half filling.

The choice of � f and �c, on the contrary, proves very
important. We use effective electrostatic energy parameters
to model complex energetics of the problem, arising from
strong renormalization of bare parameters by elastic modes.
For simplicity, we assume a linear dependence of local po-
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tentials on the charge densities of the site and interstitial
sublattices:

�i =
vij

	1 − �
nj , �4�

where �i , j�= �f ,c�, nf =1−Z and nc=Z−�, so the effective
potentials depend on both � and Z. The prefactor 1 /	1−�
represents overall rescaling of the Coulomb interaction with
the change of the lattice spacing, due to charge neutrality.
The coefficient vij is an effective potential created on an
�empty� site of the band i by the fully charged band j. We
expect the polarization to play a crucial role in the potential
renormalization. When a hole is created, the nearby electrons
are attracted to the vacancy, partially screening it. When an
electron is placed in the interstitial orbital, the nearby elec-
trons are repelled,6 again partially screening the charge fluc-
tuation. The effect of the screening is always directed toward
decreasing the energy of the corresponding particle-hole ex-
citation. Due to the elastic softness of the Wigner lattice
�e.g., shear phonons with the energy two orders of magnitude
smaller, than the bare Coulomb energy�, we expect a strong
renormalization of the excitation energy, leading to an appre-
ciable reduction in the charge-transfer gap �c−� f. Therefore,
we assume that �v f f −vcf� /v f f =�1. The value of vcc enters
only the second order corrections in �, so we ignore it and
simply set to zero. The stability requirement for the classical
Wigner crystal restricts the value of v fc. The electrostatic
energy of the WC is E= �� f�1−Z�+�c�Z−��� / �1−��. In the
classical limit, Z=� for ��0 and Z=0 for ��0. By setting
vcf = �1−�v f f, we find that the WC is stable only for v fc

�v f f�1 /2+�.

SOLUTION OF THE MODEL

The problem can be simplified in the critical regime
�when Z→0 and �→0� and analyzed analytically. This al-
lows us to make certain general statement about the nature of
the MIT. Away from the transition, we resort to a numerical
solution.

Linear analysis and stabilization of the metallic phase
via self-doping

In the following, we show that the self-doping �SD� tran-
sition always precipitates the transition taking place at half-
filling �HF�. We obtain a criterion for determining whether
the SD is electron, or holelike.

We expand our equations around the insulating solution
�Z=0, �=0� to linear order in variations of the parameters �,
Z, �, �, assuming T=0. At the transition point, �=� f +� and
the free energy is purely classical: Wc=� f. From the saddle
point equation �W /��=0 we find that in the SD transition
W−�=−�� f /��, hence �c=�� f /��.

The results of the expansion in small Z can be conve-
niently summarized in terms of the auxiliary functions
�1�V ,�� and �2�V ,�� defined as

�1�V,�� = � +
�� f

�Z
− 2V2


−�

EF

d
	�
�
1

�c − � f + 
 − �
, �5�

�2�V,�� = 1 − 2V2

−�

EF

d
	�
�
1

��c − � f + 
 − ��2 , �6�

where EF is the Fermi energy. One can check that the equa-
tion �W /�Z=0 for Z→0 �at SD or HF transition� is simply
�1�V ,��=0. Differentiating this equation �where V=V���
satisfies the equation� with respect to �, we have

0 =
d�1

d�
= �2 − 2

� +
�� f

�Z

V

dV

d�
. �7�

It follows from the saddle point equations �W /��=0 and
�W /��=0 that at the HF transition �2�V ,��=0. Therefore,
according to the Eq. �7�, dV /d�=0 at the HF transition. Di-
rect inspection indicates that W has a maximum there, thus
the SD transition always occurs before the HF transition.

By considering �W /��=�W /��=0 near the SD transi-
tion, one finds that Z=� /�2�V ,�c�. Therefore, if �2 is posi-
tive in the SD transition, then the doping is holelike, and if
�2 is negative the doping is electronlike. If �2=0, the SD
transition coincides with the MIT transition restricted to half
filling.

Numerical solution

We choose the parameters of the model that can best
mimic the experimental results. For that, we set v f f =EC,
vcf = �1−�EC, v fc=0.1EC, where =0.1 and EC is the bare
Coulomb energy. We use a parameter x=Dc / �EC� to mimic
the rs number, where Dc is the width of the interstitial band.
The electron density goes as n�x2 in a 2D electron gas. We
set V=Dc. The density of states in the interstitial band is
constant, mimicking a two dimensional dispersion. For these
choice of the parameters, we find �Eqs. �5� and �6�� that the
SD transition occurs at xSD=0.7408 �nSD=0.549� and the HF
transition occurs at xHF=0.7751 �nSD=0.601�.

In contrast to standard Mott transition, the half-filled in-
sulator �heavy dashed line in Fig. 1� thus becomes unstable
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FIG. 1. �Color online� The phase diagram in the zero magnetic
field. The MIT takes route via self-doping �thick solid line�, which
always precipitates the transition at half-filling �thin solid line�. The
inset shows the quasiparticle weight, vanishing at nc.
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to electronlike self-doping �heavy full line in Fig. 1�, before
the half filled transition takes place �thin full line in Fig. 1�.
The quasiparticle weight Z�1 /m*��n−nc� vanishes lin-
early �see inset of Fig. 1� as the transition is approached from
the metallic side, in agreement with experiments.1

TRANSPORT, EFFECT OF MAGNETIC FIELD,
AND PHASE DIAGRAM

Different properties have been studied in detail for vari-
ous Mott systems using recently developed DMFT
method12—a reliable tool even at low dimensions �unless the
critical properties are specifically tied to the system’s dimen-
sionality�. This approach can be regarded as a finite tempera-
ture generalization of the BR theory we utilized. Armed with
this knowledge, one can directly list what is expected within
the framework we consider: �1� Below the transition, trans-
port takes place by activation ��T��exp�−�o�n� /T�, with
�o�n��nc−n, just as seen in the experiments.1 �2� On the
metallic side, heavy quasiparticles exist only below a coher-
ence temperature T*�n��1 /m*��n−nc�, leading13 to a large
resistivity drop1 at T�T*�n�. �3� A parallel magnetic field
B

�
*�n��1 /m*��n−nc� is sufficient to produce full spin po-

larization of the electrons, destroying the coherent quasipar-
ticles and causing large and positive magnetoresistance.1 �4�
Close to the transition, at B� �B

�
*�n�, the resistivity saturates

to a field-independent value ��T�→���T�, which assumes an
activated form ���T��exp�−���n� /T�, where the gap ���n�
remains finite in the high field limit. This behavior is specific
to a charge-transfer �CT� model we consider, since the
charge-transfer gap �CT remains finite as B�→�, in contrast
to the standard Mott gap �Mott=U+g�BB�. �5� In the CT
model, the MIT reduces to a band-crossing transition in the
B�→� limit, where ���n���nc

�−n� vanishes at nc
��nc, and

the system remains metallic at higher densities. �6� The re-
sulting phase diagram �Fig. 2� agrees well with the experi-
mental one14 obtained for ultraclean samples.

CONCLUSIONS

We presented a theory for the interaction-driven MIT de-
scribing the clean 2DEG. Our approach focuses on vacancy-
interstitial excitations within a Wigner-Mott insulator, natu-
rally leading to a two-band �charge-transfer� Hubbard model.
As density increases, such excitations lead to an instability of
the insulating state, and produce a self-doping driven Mott
transition to a heavy electron metal. The general predictions
of this model seem to explain most puzzling features seen in

the experiment, strongly suggesting that Coulomb interac-
tions and not disorder provide the fundamental driving force
for the 2D-MIT.

The most challenging task for future work is to extend the
present approaches to explicitly include the dynamics of col-
lective charge fluctuations which are phenomenologically
treated in the considered lattice model. This goal should be
facilitated by recent advances15 in theories for Coulomb gap
phenomena, and would provide a more rigorous justification
of the lattice model we introduced. Even more importantly,
such a theory will be indispensable to understand
experiments16 at temperatures and densities where the
Wigner lattice has already melted, but where strong short-
range charge correlations persist. Such a regime is of appre-
ciable importance and extent whenever the reduced Coulomb
interaction strength rs�1, as found in many experiments on
the 2DEG.
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